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A linear correlation function is found for cloudpoint composition curves of ternary systems consisting of 
one polymer, one solvent and one non-solvent. The conditions for validity of this correlation function 
appear to be that the polymer is strongly incompatible with the non-solvent, and that only liquid-liquid 
demixing occurs. The linearized cloudpoint (LCP) curve is interpreted in terms of the various parameters 
occurring in the Flory-Huggins theory. The slope of the LCP line appears to be only dependent on the 
molar volumes of the components. Information about the binary Flory-Huggins interaction parameters 
and their concentration dependence can be obtained from the intercept of the linearized curve. Cloudpoints 
induced by crystallization do not follow the correlation. This gives an opportunity to distinguish between 
crystallization and liquid-liquid demixing without any additional experiments. 
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INTRODUCTION 

Membrane separation as a commercial separation 
process became practical after the introduction of the 
phase inversion technique for the preparation of synthetic 
membranes 1. Membranes made by phase inversion 
usually have a very thin, selective top layer and a much 
thicker porous support. 

Phase inversion basically consists of immersing a thin 
layer of a polymeric solution in a bath which contains a 
non-solvent for the polymer. This non-solvent should be 
miscible with the solvent present in the polymer solution. 
The immersion induces an exchange of solvent and 
non-solvent between the coagulation bath and the 
polymer solution 2 by diffusion and convection. Due to 
these processes, the polymer solution becomes unstable, 
and phase separation results. In the polymer solution, a 
polymer lean phase forms droplets in an increasingly 
concentrating polymer rich matrix. The polymer lean 
droplets grow out to pores; the surrounding matrix 
eventually forms the solid membrane structure. The 
concentration profiles created during the diffusion 
processes may induce a profile in the pore sizes: near the 
coagulation bath pores are very small. Deeper inside the 
polymer solution pores are usually larger. 

This process is controlled by diffusion kinetics and 
thermodynamic properties of the system. Knowledge of 
the thermodynamics of the system gives absolutely 

* To whom correspondence should be addressed 
0032 3861/93/112348-09 
© 1993 Butterworth-Heinemann Ltd. 

2348 POLYMER, 1993, Volume 34, Number 11 

essential insight into the membrane structures possibly 
obtained by a particular system. 

The most straightforward method of characterizing the 
thermodynamics of a system is by measuring the 
cloudpoint curve. The cloudpoint curve is the curve that 
forms the border between the compositions that are 
completely stable, and the compositions that are meta- or 
unstable. In a truly ternary system (in which the polymer 
is monodisperse), the cloudpoint curve coincides with the 
binodal: the line that represents compositions that can 
be at equilibrium with one another. 

In a quasi-ternary system (in which the polymer is 
polydisperse), the polymer becomes fractionated at 
equilibrium between the two phases 3. The lower molecular 
weight fractions have preference for the polymer lean 
phase, while the higher molecular weight fractions are 
primarily dissolved in the polymer rich phase. This causes 
the polymer rich phases, in equilibrium with phases leaner 
in polymer, not to lie exactly on the binodal. The 
polymer lean phase will also not be located exactly on 
the binodal. 

In a quasi-ternary system the cloudpoint curve 
represents those compositions which are at the onset of 
demixing: the demixing has not yet really taken place. 
The molecular weight distribution of the bulk has 
therefore not yet changed. 

For a thorough theoretical treatment, not only is the 
theory very complicated, but also the amount of 
experimental work needed is large. One has to determine 
all the relevant interaction parameters, eventually also 



as a function of molecular weight. In practice, the 
differences between the binodal and the cloud point 
curves are not large, as long as no compositions near the 
critical point are considered 3. This comes from the fact 
that for a membrane forming system, the polymer and 
the non-solvent are usually very incompatible. The 
polymer lean phase is therefore very low in polymer 
concentration. The polymer stays completely in the 
polymer rich phase, and there is practically no change 
in the molecular weight distribution. For such a system 
it is possible to treat a quasi-ternary system as a truly 
ternary system. This simplifies the theory considerably. 

For most ternary systems, the interaction parameters 
between solvent and non-solvent, and between polymer 
and solvent, can be easily determined from vapour 
pressure, osmotic pressure 4, or light scattering measure- 
ments 5. The interaction between polymer and non- 
solvent is more difficult. The only experimental point one 
can obtain is the swelling value of the polymer in the 
non-solvent. This is only one point, and it is not possible 
to find a concentration dependence of this interaction. 
Usually, one simply assumes an interaction parameter, 
after which the binodal is calculated 6. When this 
calculated binodal is not too far from the experimental 
cloudpoints and equilibrium data, this value of the 
interaction parameter is assumed to be approximately 
correct. 

For efficient scanning of the potentialities of membrane 
forming systems, it might be useful to have a relation 
that quickly yields information about the thermodynamics 
of a membrane forming system. Furthermore, in the 
fitting procedure mentioned before, one almost forgets 
the lower concentrations in the phase diagram: the 
polymer lean phases will be so poor in polymer that in 
a phase diagram they are effectively situated on the 
solvent-non-solvent axis. This makes it impossible to 
discriminate between weight fractions of e.g. 10 -3 and 
10 -5 . The full potential of experimental data will 
therefore not be used to obtain the right polymer-non- 
solvent interaction parameter. 

The conclusion is that it might be useful to have a 
representation of cloudpoints that does not have this 
disadvantage, and which can be useful in the quick 
interpretation of cloudpoints. 

SIMPLE EXPLICIT RELATIONS FOR 
CLOUDPOINT CURVES IN TERNARY 
SYSTEMS 

Craubner 7 derived, from perturbation thermodynamics, 
a relation that described the cloudpoint curve for systems 
dilute in polymer (less than 1 wt% polymer): 

q51 =b  In q53 + a  (1) 

in which ~b~ and ~b 3 are the weight fractions of non-solvent 
(1) and polymer (3), respectively. 

This relation, indeed, holds only for dilute systems. 
This limits the usefulness of this equation, because for 
membrane formation also the more concentrated region 
(up to 40-50 wt% polymer) is important. 

Another relation was proposed by Li et aL 8. He 
observed that for systems with more than 10wt% 
polymer, the ratio between the concentrations of solvent 
and non-solvent appears to be constant. In formula: 

qS~ = b q~2 (2) 

As can be seen in Figure 2, the relation is approximately 
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Figure 1 Cloudpoints for the system polysulfone (PSf)-dimethyl 
acetamide (DMAc) water, as measured by Li et al. 8, at 20°C, plotted 
according to the Craubner relation (1). The dotted line is the line 
expected from this relation; the solid line through the experimental 
points is only to guide the eye. The critical point is an estimation from 
calculations according to the Flory-Huggins theory 
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Figure 2 Same cloudpoints as in Figure 1, for the system polysulfone 
(PSfl-dimethyl acetamide (DMAc)-water, as measured by Li et al. 8, at 
20°C, plotted according to the Li relation. Explanation of lines as 
in Figure 1. The critical point again is an estimation 
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valid for high concentrations of polymer, but when the 
critical point is approached (near 9 wt% polymer), the 
experimental points deviate sharply from the line. 

An early review of relations meant for all types of 
ternary systems was made by Hand 9. One of the relations 
describes the 'dineric distribution', i.e. the distribution of 
one component, soluble in two phases: 

In qSz =b ln  qS~+a (3) 

in which q~i signifies the weight fraction of component i. 
Components 1 and 3 are incompatible; component 2 is 
miscible with the other two components. The indices ' 
and " represent the two phases in equilibrium with one 
another. In fact, this relation can be applied to a demixed, 
two-phase equilibrium, consisting of a polymer (3), a 
solvent (2) and a non-solvent (1). For its verification 
one needs to measure the equilibrium distribution of 
component 2 over the two phases, containing mainly 
component 1, and component 3, respectively. 

The linearized cloudpoint (LCP) correlation proposed 
here is closely related to the relation that Hand describes. 
In our case it correlates the concentrations in any single 
phase that is on the verge of demixing (the cloudpoints): 

In q~l=b In q52+a (4) 
(])3 q~3 

Here again, q~g is the weight fraction; a and b are 
constants, to be determined experimentally. This relation 
does not describe a dineric distribution, but describes the 
compositions of a single phase at the border between 
stability and instability, which are more easily determined 
experimentally. For truly ternary systems, these points 
give the binodal curve; for quasi-ternary membrane 
forming systems, the binodal curve is approximated. 
Figure 3 shows the relation for a particular system. In 
this LCP relation, there are two parameters: the slope 
(b) and the intercept (a). Figure 4 shows the dependence 
of the (mathematical) line on these parameters. 

VERIFICATION OF THE RELATION 

In Figures 5 and 7 a number of systems which are 
commonly used as membrane forming system are 
represented. The cloudpoints represented (from the 
literature and our laboratory) vary over many decades 
of polymer concentrations, typically from 10- 3 to 50wt % 
of polymer. Since the critical point is usually between 5 
and 10 wt% polymer, the relation holds for both sides 
of the binodal. The relation is following the experimental 
data over the full concentration range. 

In all cases, the slope of the line is somewhat larger 
than one, while the intercept of the line varies with the 
system. 

It has to be borne in mind that in the ternary phase 
diagram, the LCP relation always originates in the point 
of pure polymer. Since all polymers swell in non-solvents 
to a certain extent, the relation is only an approximation. 
Figure 6 demonstrates this point. The fact that there 
seems to be no deviation from the line at higher polymer 
concentrations becomes even more remarkable by this. 

During membrane formation, not only liquid-liquid 
demixing is important. Many polymers tend to crystallize 
more or less slowly in solution. Although the structure 
of the membrane formed by phase inversion will 
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Figure 3 Same cloudpoints as in Figures 1 and 2, for the system 
polysulfone (PSfl-dimethyl acetamide (DMAc)-water, as measured 
by Li et al. 8, at 20°C, plotted according to the LCP relation (4) 
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Figure 4 LCP relation, with varying intercept (a, Figure 4a) and 
varying slope (b, Figure 4b) 
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Figure 5 Polysulfone (PS0-dimethyl acetamide (DMAc)-water (from 
Li et al.S), poly(ether sulfone) (PES)-n-methyl pyrrolidone (NMP)-water 
(from Tkacik and Zemanl°), and poly(ether imide) (PEI)-n-methyl 
pyrrolidone (NMP)-water (from Roessinkal). All cloudpoints were 
measured at 20°C 
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cloudpoints, the polymer solutions were slowly cooled, 
while the light transmittance through the solution was 
measured. The temperature at which the transmittance 
starts to decrease is called the cloudpoint. The occurrence 
of crystallization was controlled by measuring the cooling 
rate dependence of the cloudpoint temperatures. At a low 
cooling rate there was a definite cooling rate dependence; 
at a higher cooling rate the rate dependence disappeared. 
The 'real' liquid-liquid demixing cloudpoint was defined 
as that cloudpoint where this dependence disappeared. 
This is based on the observation that for cellulose 
acetate, crystallization is much slower than liquid-liquid 
demixing. Fiyure 7 shows that for a crystallizable system, 
these 'real' liquid liquid demixing cloudpoints still follow 
the LCP relation, as observed for completely amorphous 
systems. 

In Figure 8, a system is given in which crystallization 
is fast and plays a more dominant role. The polymer is 
poly(dimethyl phenylene oxide), the solvent is trichloro 
ethylene, and the non-solvent is a mixture of a strong 
solvent (methanol) and a weak non-solvent (octanol). The 
part with lower polymer concentrations (the right-hand 
part in the LCP plot) gives a set of straight lines, all 
with approximately the same slope, but for each 
methanol/octanol ratio a different intercept is found. For 
the system with pure methanol as non-solvent, i.e. the 
strongest non-solvent, the intercept is the smallest. With 
only octanol as non-solvent, the largest intercept is 
obtained (i.e. the smallest liquid-liquid demixing gap). 

The part with higher polymer concentrations (the left- 
hand side of the figure) gives crystallization. For the 
highest polymer concentrations, which is for low non- 
solvent concentrations, the cloudpoint curves converge 

2 1 

Figure 6 LCP relation always crosses two corners of the ternary phase 
diagram. Experimental points usually go to a point of a few per cent 
non-solvent in the polymer. For clarity, the deviations of the 
experimental points are exaggerated 

usually be controlled by fast liquid-liquid demixing, 
crystallization can be very important for highly 
crystalline polymers which crystallize rapidly. 

Especially in the more concentrated surface region 
during phase inversion, crystallization may compete with 
liquid-liquid phase separation, and therefore determine 
the separation properties of the ultimate membrane. 

During cloudpoint measurement, crystallization is 
usually very difficult to distinguish from liquid-liquid 
demixing. In Fioure 7, cloudpoints are given for the 
crystallizable polymer cellulose acetate. To measure the 
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Figure 7 Cloudpoint curves for the system cellulose acetate (CA~tetra- 
hydrofuran (THF)-water 12, in the ternary phase diagram and in the 
LCP form. The solvents are, respectively, tetrahydrofuran and acetone 
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Figure 8 Cloudpoint curves for poly(dimethyl phenylene oxide)-trichloro 
ethylene-non-solvent, in which the non-solvents are a mixture of 
methanol and octanol (data from Wijmans et al l  2). The weight ratio of 
methanol to octanol was varied 

to the same vertical line. This line extrapolates to the 
crystallization point of PPO in trichloro ethylene, which 
is independent of the non-solvent. 

It should be noted that the experimenters lz observed 
cooling rate dependence of the cloudpoints for the 
higher polymer concentrations, which agrees with 
the assumption that the 'deviating' cloudpoints are 
crystallization points. The same followed from differential 
scanning calorimetry measurements, and pulse induced 
critical scattering (PICS) measurements by the same 
authors. 

In this way, the LCP curve might give a crude but 
quick way to distinguish between crystallization and 
liquid-liquid demixing. 

For non-polymeric systems, the relation does not 
seem to hold as nicely as for the systems discussed so 
far. It appears from Figure 9, in which the system 
water (1)-methanol (2)-diethyl ether (3) is represented, 
that a not very straight line is obtained. It must be 
concluded that for non-polymeric systems, the LCP 
relation is not applicable. 

It is interesting to consider a system of two 
incompatible polymers and a mutual solvent. The 
non-solvent here is one of the polymers. Of course, in this 
case the system is no longer 'membrane forming'. 

Figure 10 shows the system polyisobutylene (1)- 
toluene (2)-polystyrene (3), as measured by Van den 
Esker z3. It appears that the LCP curve is applying 
reasonably well, when considering the experimental 
difficulties in obtaining these cloudpoints. The slope here 
is much larger than one, which agrees with the fact that 
the critical point is not in the neighbourhood of the 
toluene/polystyrene axis in the ternary phase diagram. 
The LCP relation, therefore, could be useful in gathering 
information about the interaction between two incom- 
patible polymers. This, however, should be investigated 
more carefully in future work. 

INTERPRETATION OF THE LCP RELATION 

The LCP relation, as was proposed: 

ln~l=blne~Z +a (4) 

~ D  

~ D  

~ 0  A:Z 

"5 

~ - 2  
c D  

E 

"~ -3_3 i 1 f , i , i , 

-2 -1 0 1 2 3 

ln(% water/% diethyl ether) 

water methanol 

Figure 9 LCP plot for a low molecular weight system. The two 
immiscible components are here diethyl ether and water, the 'solvent' 
is methanol. It appears that a not very straight line is obtained. It must 
be concluded then that the LCP is not applicable to systems without 
a polymer 
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Figure 10 LCP plot for the system polystyrene (3)-toluene (2)- 
polyisobutylene (1), for two systems with different molecular weights: 
system one: MWes=194 , MWpm=156kgmo1-1,  and system two: 
MWps = 526, MWpm = 670 kg mol -  1 
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has two parameters, the slope b and the intercept a. From 
Figure 3 it is clear that the slope could give information 
about the situation of the critical point in the phase 
diagram. 

For the slope b, one limiting case is a value of one. 
This value represents a straight line through the phase 
diagram. Such a cloudpoint curve would be found for a 
hypothetical system in which the polymer has infinite 
molecular weight. In this case, the critical point is situated 
on the solvent non-solvent axis. The other extremum, a 
rather low molecular weight of the polymer, introduces 
a slope which is larger. A large value of b suggests a 
critical point near the middle of the binodal curve in the 
phase diagram. 

The intercept a appears to dictate the area covered by 
the demixing gap (see Figure 3), which is mainly governed 
by enthalpic effects. One would therefore expect that the 
slope gives only entropic information (the molecular 
volumes), and that the intercept gives information about 
enthalpic effects (the 9us). The interesting fact about the 
LCP relation seems to be a decoupling of enthalpic and 
entropic effects. 

To investigate this further, we try to interpret the LCP 
relation according to the Flory-Huggins theory. 

The Flory-Huggins equation gives the free enthalpy 
of mixing as a function of the concentration of the 
components. From this equation, the slope and the 
intercept of the LCP line can be obtained, under the 
assumption that the line is applicable. This does not 
follow from the Flory Huggins interpretation, as should 
be expected: the relation should not be valid for all ternary 
systems (see Figure 9). 

The slope is a function of the molar volumes: 

b - v l  - v 3  (5) 

U2--U 3 

while the intercept a contains the Flory-Huggins 
interaction parameters: 

a = {{(Y12 q-g'l 2 ) ( -  u2 b q51 + v t ~b2) 

+#13(/)1 ~ b 3 -  u 3 ( 1 -  b)q51) 

+(gt2 +g'te)(-vebq)3 +v3(1-b)4)2)} (6) 

In these relations, the following symbols occur: 

~b i volume fraction of component i 
vi molar volume of component i (m 3 mol-  t) 
b vl-/23 

V2 --/)3 
gu Flory-Huggins interaction parameter between 

components i and j, usually concentration 
dependent (no unit) 

9'12 derivative of the interaction parameter g12: 
8912 

U2(1 - - U 2 ) - -  
Ou2 

9~3 derivative of the interaction parameter g23: 
" 1  

V2(1 --/22) ~ 3  

u2 4'2/(4'2 + 4'0 
/32 ~b2/(q~2 + q)3) (7) 

The intercept is a simple relation in the volume 
fractions and the interaction parameters. Interestingly, 
the interaction parameters themselves, 9u, and their 
derivatives, ,q'u, are taken together as one parameter. 
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The slope b only contains entropic parameters. Systems 
with a polymer with a high molecular weight hay,; a slope 
just larger than one. Systems in which the polymer 
molecular weight is lower have a larger slope. 

Interestingly, the low molecular weight system shown 
in Figure 9 exhibits a slope of around 0.7. Relation (4) 
implies that only for ternary systems consisting of 
polymer, solvent and non-solvent (i.e. a membrane 
forming system) should the slope be around one. 
Therefore, the slope in Figure 9 confirms relation (4). In 
Figure 10, a system with two polymers, the slopes are 2.3 
to 2.7: again this confirms relation (4). 

The intercept a contains the interaction parameters, 
together with molar volumes. Apparently, the enthalpic 
interactions are completely taken into account by the 
intercept. 

Information about the interaction parameters can be 
obtained directly from the value of the intercept a, via 
relation (6). The LCP is an explicit relation for a 
cloudpoint (binodal) curve in a ternary membrane 
forming system. From the Flory-Huggins theory, it is 
not possible to obtain an explicit relation for the binodal. 
It appears now that such a relation does exist for certain 
systems. This relation holds only when the LCP plot 
holds, i.e. when the interaction parameter between the 
polymer and the non-solvent is high, and when only 
liquid-liquid demixing occurs. 

We can draw the cloudpoint curve as interpreted from 
the Flory-Huggins theory in the LCP plot. An example 
of this is given in Figure 11. 

RESULTS AND DISCUSSION ON SLOPES AND 
INTERCEPTS 

Amorphous systems with low polymer non-solvent 
interaction 

For membrane forming systems, the LCP curve always 
gives a slope slightly larger than one. It is possible to 
express the cloudpoint curve as a simple function of the 
interaction parameters (see Figure ll). The slope is 
independent of the interaction parameters, and is only 
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Figure 11 LCP plot for the system poly(ether sulfone)-n-methyl 
pyrrolidone water, and the line as given by the derived slope 
b and intercept a. The interaction parameters used here are: 
g,2=0.718+0.669u2; g23=0.290+0.501v2 (values taken from Tkacik 
and Zemanl°). The polymer non-solvent interaction parameter y~ 3 is 
used as a fitting parameter. The optimal value found was 3.6. The 
variables u 2 and v 2 are defined in the Appendix. ©: experimental points; 

: calculated on the basis of Flory-Huggins interpretation 
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Table 1 Slopes of the LCP plots shown in Figure 5. Although 
deviations between experiments and theory are significant, the 
slopes agree reasonably well, when considering that in theory the 
polydispersity of the polymers is neglected 

System Experimental slope Theoretical slope 

PSf 1.04 + 0.0025 1.002 
PEI 1.02_+ 0.0068 1.003 
PES 1.10_+0.018 1.04 

dependent on the molar volumes. Table 1 gives some of 
the slopes of the systems shown in Figure 5. 

The errors in the values of the slope are quite small 
(0.24-1.6%), due to the large range of experimental points 
for which the relation applies. There is a significant 
difference between the experimental results and theory. 
In the theory the polydispersity of the polymer is 
neglected; since the polymers are quite polydisperse, this 
might explain the difference. 

In principle, for these types of systems it should be 
possible to determine a whole cloudpoint curve by simply 
measuring two points (when the theoretical slope is 
assumed, even one cloudpoint would suffice). In practice, 
a few cloudpoints should be enough to check the validity 
of the relation. From these few measurements, immediate 
information is then found for the interaction parameters. 
From Figure II, it appears that the experimental 
cloudpoints can be approached using independently 
measured interaction parameters 012 and g23- In this 
figure, the polymer-non-solvent interaction parameter 
g,3 is used as 'fitting parameter'. Tkacik and Zeman t° 
assumed a value of 1.5 for this parameter by fitting their 
binodal on their experimental points. In Figure 11 we 
find a value of 3.6, which is in better agreement with 
swelling data for the polymer in the non-solvent. This 
example shows that the LCP plot offers a better basis 
for such fitting procedures, simply because each experi- 
mental cloudpoint obtains the same weight in the fitting 
procedure. 

Systems with crystallizable polymers 
It appears that even for systems with crystallizable 

polymers, the liquid-liquid demixing points follow the 
LCP relation. When crystallization occurs predominantly, 
the cloudpoints deviate from the LCP line. The deviating 
points converge to a vertical asymptote (the crystallization 
point of the polymer in the solvent). This deviation might 
offer a quick method to see whether a certain system 
exhibits crystallization phenomena. 

The proposed relation is only applicable under certain 
conditions. These conditions should always be considered 
before starting any interpretation. It appears that for 
applicability of the LCP relation, the swelling value of 
the polymer in the non-solvent must not be too large. For 
systems which exhibit crystallization, the crystallization 
phenomena might influence measurement of that swelling 
value of the polymer in the non-solvent that is due solely 
to liquid-liquid demixing. 

The crystallization process is usually several orders of 
magnitude slower than liquid-liquid demixing. Investi- 
gation of the dependence of the cloudpoint curve on the 
cooling rate of the samples (when thermal demixing is 
used) is therefore a suitable tool after deviation from the 
LCP line showed that crystallization might be present. 

CONCLUSIONS 

A linearized cloudpoint correlation is proposed, which 
gives very good experimental results in membrane 
forming systems: 

In q51 = b In q~2 + a (4) 
~3 ~3 

The correlation appears only valid for systems with one 
polymer. The plot gives straight experimental lines as 
long as two conditions are satisfied: 

1. The polymer and the non-solvents should have poor 
interaction (high gxa interaction parameter, low 
swelling value of the polymer in the non-solvent). 

2. The polymer should be completely miscible in the 
solvent in all possible concentrations; the same 
should apply to the solvent and the non-solvent. 

The LCP relation only describes a cloudpoint curve 
caused by liquid-liquid demixing. Whenever other 
demixing (crystallization) effects play a role, a more or 
less sharp deviation of the LCP line is found. 

The simplicity of the relation makes it useful for the 
quick evaluation of a ternary membrane forming 
system. Only two parameters have to be determined: the 
intercept of the line, and the slope. The slope is not 
completely unknown, because for membrane forming 
systems the slope of the line is always slightly larger than 
one. It should therefore be enough to determine a few 
cloudpoints (ideally only one, because the slope could 
be calculated) for characterization of the complete 
cloudpoint curve. 

The relation has advantages for the estimation of the 
polymer-non-solvent interaction parameter from the 
cloudpoint curve itself: all experimental cloudpoints are 
weighed in the same way, therefore giving a better 
estimate of this interaction parameter. The relation could 
also be useful when investigating blends of immiscible 
polymers with a common solvent. The relation could, 
after measurement of a few cloudpoints in the dilute 
region, give fast information for these systems, over a 
broader concentration range. 
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APPENDIX 

Derivation of the slope (b) and the intercept (a) 
The Flory-Huggins theory gives the free enthalpy of 

mixing for a ternary system as a function of the 
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concentrations: 

A G  m 
R T  - nl In q~l + n2 In 4'2 + n3 In 4'3 

-~-(Ulg 12n14'2 -~ Dlg  13 r/1(~)3 --~/)2923 n2 4'3) 

(A1) 

in which n i and 4'~ are, respectively, the number of moles 
and the volume fraction of component i. Component 
number 1 is the non-solvent, 2 is the solvent, and 3 is the 
polymer. The quantity/)i is the molar volume (m 3 mol-  ~) 
of component i. The gus are the Flory-Huggins 
interaction parameters which are a measure of the 
enthalpic interaction between components i and j. 
They are not usually constant, but functions of the 
concentrations of all the components present. In most 
cases, it is possible to assume that gu is only dependent 
on the concentrations of i and j, and not of the other 
component present. This means formally: 

4'2 
~'112=g12(U2); U2-- 4'1 q_4' 2 

4'2 (A2) • q23 =g23%); / ) 2 - ¢ 2 + 4 3  

The interaction parameter  913 is assumed to be 
independent of the concentrations. The chemical 
potentials of mixing A/g~ can now be derived by 
differentiating with respect to the number of moles of 
each component: 

A/g~ ln4'1 (/)1 4'2 4'/)3 1 
F--  

v l R T  /)1 U1 /)2 /)3 /)1 

+ (g12 4'2 + g134,3)(1 - 4'1) 

--g234'24'3--4'2g'12 

A/g2 ln4'2 4'1 4'2 4'/53 1 

v 2 R T  /)z /)1 v2 v3 /)2 (A3) 

+ (y~ 24'1 + g234'3)(1 - 4,2) 
+ ' + ' -g,34',4'3 4'~g12 4'3g~3 

A/g3 ln4'3 4'~ 4'2 4'3 1 
/)3R T v3 /)3 U1 /)2 U3 

+ (g23 4'2 + gx 34'/)1)( 1 
! 

-g124'14'2-4'2923 

~ O p J  

] 

I 

Points that are at J 
equilibrium - - - - - - - - ~ f l  

, _; . . . . . .  - - 2  ¢ p )  

/ ~ " ) ¢ p l  

L ~,¢p/  

Figure AI  LCP line on which two points are located which are in 
equilibrium with one another.  The chemical potentials of all components  
in the two phases must be equal 

Linearized cloudpoint correlation. R. M. Boom et  al .  

The derivatives of the composition dependent interaction 
parameters g'u are defined as: 

g'12 = U2(1 - -  U2) ; g~3 : - / ,2 (1  - -  C2) (A4) 

Two linear combinations of the chemical potentials are 
calculated. The following two relations result when the 
logarithmic terms are isolated at the left-hand sides of the 
equal signs: 

l n ( 4 " )  
\,4'2J l" A/g1 -- A/g2 "l _}_ ~ 4'i 

/ )1 -v2  ( ( v ~ - / ) 2 ) R T )  1 ~'~ 

1 
- - - - { g 1 2 ( / ) 1 4 ' 2 (  l --4'1)--U24'1(1-4'2)) 

U 1 - -U  2 

- -  grl 2(U14'2 -{- U201)  

+,<3(/)14'3(1-4'0+/)24'~4'3) 

~- g 2 3 ( -  1314'24'3 - -  t:2 4'3( l - -  4' /)2))- g23/)24 '3  } 

(AS) 

ln( ) 
f A/g 3 -  A/g 2 ) 30~ 

. . . .  + 2 . - -  
/ ) 3 -  D2 l ( V 3 - - / ) 2 ) R T ; 1 / ) i  

1 
{g23(/)34'2(1 - 43)-/)243(1 - 42)) 

/)3 - - / )2  

- -  ~q23(/)3 (/)2 ~- U2 4'3) 

-}- g13(/)14'3( 1 - -  4'1)Jr- l '24 '14 '3)  

+ g12(--/)34'24'1 -- / '2(])1(  l - -  4 '2))-- ,q '12L'24'  1 } 

(A6) 

From these expressions, it follows by subtracting the 
equations that: 

1 ln4'1 1 in 4'3 = ~ A/gl-A#2 ~ ' 3 - A / g 2  ; 
ljl--/)2 4'2 I)3--V2 4'2 ((UI--V2) R T  (r3- -v2)RT)  

-1- (g 12 -}- g'12)(5{0 l -l- fl14'2) 

+,q13(fl14'3- [S01) 
+ (g23 + g~ ~)(c~4'~ + fl34'2) 

(A7) 
in which: 

v 2 f b ~ .  Vl I) 3 b__~)3-t',l 
; :~= " - - ,  - - f l ~ = - - ;  fl3- 

U3--U 2 V3--V2 \ b - - l / /  u i - u  2 U 3 --  U 2 

(A8) 

For two compositions in equilibrium with each other, 
the chemical potential of each component in one 
phase must be equal to the chemical potential in the 
other phase: 

A/gone phase = A/gother phase for all is (A9) 

This, then, also applies to a linear combination of these 
chemical potentials. When the difference over the 
two phases is considered, the difference of a linear 
combination of the chemical potentials over the two 
phases is zero: 

- 1 ~ , ~  A~°~ -- A/12 ~ . . . .  hase = ~ A~ 1 A/12 " A~/3 __ ~ /2  ~othcr phase 

([I--t~2)RT (v3 c2)RT) ((vl--v2)RT ( v 3 - z ~ 2 ) R T ) ( A 1 0 )  

P O L Y M E R ,  1 9 9 3 ,  V o l u m e 3 4 ,  N u m b e r 1 1  2 3 5 5  



Linearized cloudpoint correlation: R. lid. Boom et al. 

From equation (AT) we obtain with this: 

A{ 1 ln¢1 _ _ 1  ln~2}=A{(gx2+g,xz)(a¢,+flx¢2) 
v , -v2  ¢~ v3-/32 

+g13(&¢3-/~3¢0 

+(g,2 + g'~2)(~¢3 +/h¢9} 
(All) 

in which A indicates the difference of the quantity 
between brackets over the two phases in equilibrium. 
Multiplication with a factor v I -v2,  and rearrangement 
of both sides of the equation, gives: 

A,fln  l-bln } ( ¢3 ~3 =A{(g12q-g~12)(-/)2b(91+/31(P2) 

nt- g l  3(/31 ¢3  - v3(1 - b)q~ 1) 

-¥ (gl  2 -[- gr12)( - / 3 2 b ¢ 3  +/)3( 1 - b)¢2)} 

(A12) 

in which: 

b - v l  -v3 (A13) 
/32--/) 3 

As we can see in practice that the LCP plot gives a 
straight line, apparently the difference term at the 
right-hand side of the equal sign is zero. If this difference 
were not zero, we would not obtain a straight LCP line. 

The difference over the two phases in equilibrium of 
the quantity in equation (A11): 

(Y12 + g'l 2)(--/)2bq~ 1 q-/)1 (~2) ' [  g l  3(/)1 (~3 --/)3( 1 - b)q~l) 

q- (g l  2 q- .q'X 2) ( - / )2b~93 -[-/33( 1 - b)¢2) 
(A14) 

must be zero. This indicates that the quantity itself must 
be constant over the LCP line. 

This can be clarified by considering some line, described 

by: 

Rewriting this to: 

y=bx +a (A15) 

y - b x = a  (A16) 

gives a formula comparable to (A1 1): 

A(y -  bx) = Aa (A17) 

For each point, it follows now that the parameter a must 
be constant. Its value can be evaluated by not taking the 
difference, but the sum over the two phases: 

two phases two phases 

( y -  bx) = ~, a (A 18) 

The value of a is the part of equation (A17) on the 
right-hand side of the equal sign, divided by 2. This is 
then also applied to equation (A1 1): 

t w o  t w o  
phases ( .~ ,~, ~] phases 

l l n ~ - b l n ~ 3 2 t  = ~ {(gl2~-0~12)(--t)2b¢l~-t)l¢2) 

+ 013(v1¢3 - v3(1 - b)¢0 

+ (g12 + 9'12)( - v2b¢3 + v3( 1 - b)¢/)} 

(A19) 

It appears that the intercept a can be written out as: 

a =1{(912 +g'12)(-- v2bC~l -[- Vlq~2) 

"-[- g 13(/)1~3 - -  V3(1 - -  b)¢ 0 

"k-(g12-}-g'12)(-/32b(o3"k-v3(1-b)¢2)} (A20)  

which is an explicit relation for the intercept a in the 
interaction parameters and the molar volumes. 

It should be noted that if the enthalpic parts (the terms 
with the gijs) of the chemical potentials [equations (A3)] 
were replaced by one single constant for each chemical 
potential, the LCP line would immediately follow from 
this Flory-Huggins interpretation. 
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